Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biogeochemistry ; 135(1): 1-34, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32009689

RESUMO

Continental shelf sediments are globally important for biogeochemical activity. Quantification of shelf-scale stocks and fluxes of carbon and nutrients requires the extrapolation of observations made at limited points in space and time. The procedure for selecting exemplar sites to form the basis of this up-scaling is discussed in relation to a UK-funded research programme investigating biogeochemistry in shelf seas. A three-step selection process is proposed in which (1) a target area representative of UK shelf sediment heterogeneity is selected, (2) the target area is assessed for spatial heterogeneity in sediment and habitat type, bed and water column structure and hydrodynamic forcing, and (3) study sites are selected within this target area encompassing the range of spatial heterogeneity required to address key scientific questions regarding shelf scale biogeochemistry, and minimise confounding variables. This led to the selection of four sites within the Celtic Sea that are significantly different in terms of their sediment, bed structure, and macrofaunal, meiofaunal and microbial community structures and diversity, but have minimal variations in water depth, tidal and wave magnitudes and directions, temperature and salinity. They form the basis of a research cruise programme of observation, sampling and experimentation encompassing the spring bloom cycle. Typical variation in key biogeochemical, sediment, biological and hydrodynamic parameters over a pre to post bloom period are presented, with a discussion of anthropogenic influences in the region. This methodology ensures the best likelihood of site-specific work being useful for up-scaling activities, increasing our understanding of benthic biogeochemistry at the UK-shelf scale.

2.
Biogeochemistry ; 135(1): 35-47, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32009690

RESUMO

Shelf sediments play a vital role in global biogeochemical cycling and are particularly important areas of oxygen consumption and carbon mineralisation. Total benthic oxygen uptake, the sum of diffusive and faunal mediated uptake, is a robust proxy to quantify carbon mineralisation. However, oxygen uptake rates are dynamic, due to the diagenetic processes within the sediment, and can be spatially and temporally variable. Four benthic sites in the Celtic Sea, encompassing gradients of cohesive to permeable sediments, were sampled over four cruises to capture seasonal and spatial changes in oxygen dynamics. Total oxygen uptake (TOU) rates were measured through a suite of incubation experiments and oxygen microelectrode profiles were taken across all four benthic sites to provide the oxygen penetration depth and diffusive oxygen uptake (DOU) rates. The difference between TOU and DOU allowed for quantification of the fauna mediated oxygen uptake and diffusive uptake. High resolution measurements showed clear seasonal and spatial trends, with higher oxygen uptake rates measured in cohesive sediments compared to the permeable sediment. The significant differences in oxygen dynamics between the sediment types were consistent between seasons, with increasing oxygen consumption during and after the phytoplankton bloom. Carbon mineralisation in shelf sediments is strongly influenced by sediment type and seasonality.

3.
Biogeochemistry ; 135(1): 69-88, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32009692

RESUMO

This study used microelectrodes to record pH profiles in fresh shelf sea sediment cores collected across a range of different sediment types within the Celtic Sea. Spatial and temporal variability was captured during repeated measurements in 2014 and 2015. Concurrently recorded oxygen microelectrode profiles and other sedimentary parameters provide a detailed context for interpretation of the pH data. Clear differences in profiles were observed between sediment type, location and season. Notably, very steep pH gradients exist within the surface sediments (10-20 mm), where decreases greater than 0.5 pH units were observed. Steep gradients were particularly apparent in fine cohesive sediments, less so in permeable sandier matrices. We hypothesise that the gradients are likely caused by aerobic organic matter respiration close to the sediment-water interface or oxidation of reduced species at the base of the oxic zone (NH4 +, Mn2+, Fe2+, S-). Statistical analysis suggests the variability in the depth of the pH minima is controlled spatially by the oxygen penetration depth, and seasonally by the input and remineralisation of deposited organic phytodetritus. Below the pH minima the observed pH remained consistently low to maximum electrode penetration (ca. 60 mm), indicating an absence of sub-oxic processes generating H+ or balanced removal processes within this layer. Thus, a climatology of sediment surface porewater pH is provided against which to examine biogeochemical processes. This enhances our understanding of benthic pH processes, particularly in the context of human impacts, seabed integrity, and future climate changes, providing vital information for modelling benthic response under future climate scenarios.

4.
Biogeochemistry ; 135(1): 155-182, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32009696

RESUMO

Results from a 1D setup of the European Regional Seas Ecosystem Model (ERSEM) biogeochemical model were compared with new observations collected under the UK Shelf Seas Biogeochemistry (SSB) programme to assess model performance and clarify elements of shelf-sea benthic biogeochemistry and carbon cycling. Observations from two contrasting sites (muddy and sandy) in the Celtic Sea in otherwise comparable hydrographic conditions were considered, with the focus on the benthic system. A standard model parameterisation with site-specific light and nutrient adjustments was used, along with modifications to the within-seabed diffusivity to accommodate the modelling of permeable (sandy) sediments. Differences between modelled and observed quantities of organic carbon in the bed were interpreted to suggest that a large part (>90%) of the observed benthic organic carbon is biologically relatively inactive. Evidence on the rate at which this inactive fraction is produced will constitute important information to quantify offshore carbon sequestration. Total oxygen uptake and oxic layer depths were within the range of the measured values. Modelled depth average pore water concentrations of ammonium, phosphate and silicate were typically 5-20% of observed values at the muddy site due to an underestimate of concentrations associated with the deeper sediment layers. Model agreement for these nutrients was better at the sandy site, which had lower pore water concentrations, especially deeper in the sediment. Comparison of pore water nitrate with observations had added uncertainty, as the results from process studies at the sites indicated the dominance of the anammox pathway for nitrogen removal; a pathway that is not included in the model. Macrofaunal biomasses were overestimated, although a model run with increased macrofaunal background mortality rates decreased macrofaunal biomass and improved agreement with observations. The decrease in macrofaunal biomass was compensated by an increase in meiofaunal biomass such that total oxygen demand remained within the observed range. The permeable sediment modification reproduced some of the observed behaviour of oxygen penetration depth at the sandy site. It is suggested that future development in ERSEM benthic modelling should focus on: (1) mixing and degradation rates of benthic organic matter, (2) validation of benthic faunal biomass against large scale spatial datasets, (3) incorporation of anammox in the benthic nitrogen cycle, and (4) further developments to represent permeable sediment processes.

5.
Mar Environ Res ; 65(3): 235-49, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18082251

RESUMO

The purpose of this research was to investigate the potential causes of low oxygen levels in the bottom water of the Oyster Grounds region of the shallow southern North Sea, an area which provides suitable conditions for low oxygen levels to develop. At the end of the summer stratified period, relevant biogeochemical processes were investigated using a combination of sedimentary and water column rate measurements. Phytoplankton nitrate and ammonium uptake was measured throughout the water column using (15)N labelled isotopes and showed ammonium uptake dominated in the upper and bottom mixed layer with a maximum 294.4 micromol N m(-3)h(-1). In the deep chlorophyll maximum at the thermocline, primary production was dominated by nitrate uptake, with an average of 35.0 micromol N m(-3)h(-1), relative to ammonium uptake, with an average of 24.6 micromol N m(-3)h(-1). This high relative nitrate uptake will in part result in exportable new production to the isolated bottom mixed layer and sediments, as opposed to regenerated ammonium driven uptake. This biomass export was indicated by significant benthic oxygen consumption rates in the stratified region (782-1275 micromol O(2)m(-2)h(-1)micromol N m(-3)h(-1)) long after the end of the spring bloom. The sediments were also an active net source of nitrate, ammonium, phosphate and silicate into the bottom mixed layer of 4.4, 8.4, 2.3 and 68.8 micromol m(-2)h(-1), respectively. The export of new production within the thermocline to the bottom mixed layer and the consequent sediment oxygen consumption in the isolated bottom mixed layer in the Oyster Grounds are expected to have contributed to the low bottom water oxygen concentrations of 2.07 mg l(-1) (64.7 micromol l(-1)) measured. The long stratified period associated with this low oxygen is predicted to occur more regularly in the future and continued monitoring of this ecologically important region is therefore essential if the causes of these potentially damaging low oxygen levels are to be fully understood.


Assuntos
Ecossistema , Monitoramento Ambiental , Ostreidae/metabolismo , Oxigênio/análise , Oxigênio/metabolismo , Animais , Biomassa , Sedimentos Geológicos , Hipóxia , Nitratos/metabolismo , Isótopos de Nitrogênio , Mar do Norte , Fotossíntese , Fitoplâncton/metabolismo , Compostos de Amônio Quaternário/metabolismo , Estações do Ano
6.
Geochem Trans ; 2(1): 112, 2001 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-16759420

RESUMO

Bottom trawling causes physical disturbance to sediments particularly in shelf areas. The disturbance due to trawling is most significant in deeper areas with softer sediments where levels of natural disturbance due to wave and tidal action are low. In heavily fished areas, trawls may impact the same area of seabed more than four times per year. A single pass of a beam trawl, the heaviest gear routinely used in shelf sea fisheries, can kill 5-65% of the resident fauna and mix the top few cm of sediment. We expect that sediment community function, carbon mineralisation and biogeochemical fluxes will be strongly affected by trawling activity because the physical effects of trawling are equivalent to those of an extreme bioturbator, and yet, unlike bioturbating macrofauna, trawling does not directly contribute to community metabolism. We used an existing box-model of a generalised soft sediment system to examine the effects of trawling disturbance on carbon mineralisation and chemical concentrations. We contrasted the effects of a natural scenario, where bioturbation is a function of macrobenthos biomass, with an anthropogenic impact scenario where physical disturbance results from trawling rather than the action of bioturbating macrofauna. Simulation results suggest that the effects of low levels of trawling disturbance will be similar to those of natural bioturbators but that high levels of trawling disturbance prevent the modelled system from reaching equilibrium due to large carbon fluxes between oxic and anoxic carbon compartments. The presence of macrobenthos in the natural disturbance scenario allowed sediment chemical storage and fluxes to reach equilibrium. This is because the macrobenthos are important carbon consumers in the system whose presence reduces the magnitude of available carbon fluxes. In soft sediment systems, where the level physical disturbance due to waves and tides is low, model results suggest that intensive trawling disturbance could cause large fluctuations in benthic chemical fluxes and storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...